
Jaemin Choi1, Zane Fink1, Sam White1, Nitin Bhat2,
David F. Richards3, Laxmikant V. Kale1,2

1 University of Illinois at Urbana-Champaign
2 Charmworks, Inc.

3 Lawrence Livermore National Laboratory

May 17, 2021
AsHES Workshop at IPDPS

GPU-aware Communication with UCX in Parallel
Programming Models: Charm++, MPI and Python

Motivation

• Increasing adoption of multi-GPU nodes and GPU acceleration in
today’s HPC systems

• Need for GPU-aware communication in Charm++

• Multiple front-end models/languages: Charm++, Adaptive MPI,
Charm4py (Python)

• Cater to asynchronous message-driven execution

• Implemented support using CUDA P2P memcpy and IPC
→ only for Charm++, insufficient performance

• How can we support efficient GPU-aware communication in a
portable way?

• Use Unified Communication X (UCX)!

• Support NVIDIA and AMD GPUs

< Node Diagram of OLCF Frontier >

2 / 17

Approach

• Machine layer interacts with the interconnect to perform communication

• Extend the UCX machine layer in Charm++ RTS to support GPUs

3 / 17

Background

• Charm++

• Object-oriented parallel programming system based on C++

• Parallel objects (i.e., chares) mapped to Processing Elements (PEs, e.g., CPU cores)

• Message-driven execution

• Messages exchanged between chare objects drive computation

• Computation encapsulated in entry methods (methods that can be invoked remotely)

• Necessitates metadata (e.g., target chare & entry method) to be contained in messages

4 / 17

Background

• Adaptive MPI (AMPI)

• MPI library implementation on top of Charm++

• Virtualization: enables multiple MPI ranks per OS process

• Can co-schedule and migrate ranks between PEs

• Charm4py

• Python framework on top of Charm++

• Cython layer connects Charm++ RTS in C++ and Charm4py RTS in Python

• Communication through channels established between chares

5 / 17

Design Overview

• Utilize GPU-awareness in UCX tagged send/recv API

• Extend UCX machine layer in Charm++ RTS

• Multiple buffers can be sent with single entry method invocation (no explicit receive)

• Send metadata and buffers on host memory through existing mechanism

• Send GPU buffers separately through the UCX machine layer extension

void Sender::foo() {
receiver.bar(my_int, my_buffer);

}

void Receiver::bar(int dir, double* buf) {
...

}

6 / 17

Design Overview

• When host-side message arrives on the receiver

• Scheduler picks up message from message queue

• Unpacks host buffers

• Posts receives for incoming GPU buffers using metadata

• Once all data arrives, scheduler executes target entry method

• Limitation: delay in posting receive for GPU data

7 / 17

Implementation Details

• UCX machine layer

• Originally contributed by Mellanox for host-side communication

• Portable abstraction for different networking hardware supported by UCX

• Uses UCP Tagged API: ucp_tag_send_nb, ucp_tag_recv_nb

• UCX tags (64 bits) for host-side messages are only used to determine the type of message

• User buffers and Charm++ layer-specific data are packed inside the payload

• How to handle GPU-aware communication (separate UCX send/receive)?

• Need some correlation to post receive for GPU buffer

• Each PE keeps a counter

• Incremented on every GPU-aware message send

• Contained in the host-side metadata message for receiver

8 / 17

Implementation Details

• Charm++

• GPU buffers can be passed to entry method invocations

• nocopydevice: denote source GPU buffer

• CkDeviceBuffer: store metadata for RTS

• Receiver provides address of destination buffer

// Charm++ Interface (CI) file
// Exposes chare objects and entry methods
chare MyChare {

entry MyChare();
entry void recv(nocopydevice char data[size],

size_t size);
};

// C++ source file
// (1) Sender chare
void MyChare::send() {

peer.recv(CkDeviceBuffer(send_gpu_data), size);
}

// (2) Receiver’s post entry method
void MyChare::recv(char*& data, size_t& size) {

// Set the destination GPU buffer
// Receive size is optional
data = recv_gpu_data;

}

// (3) Receiver’s regular entry method
void MyChare::recv(char* data, size_t size) {

// Received GPU buffer is available
...

}

ptr si e tag c

ptr si e tag c

 mi end evice

 rts end evice

9 / 17

Implementation Details

• Adaptive MPI (AMPI)

• Each AMPI rank is implemented as a chare object

• Communication occurs through message exchanges
between chares

• User’s MPI tag is not provided to UCX (unlike other
MPI implementations)

• Software cache for checking if source buffer is on
GPU memory

• GPU buffers are sent separately, for which receives
are posted only after the host-side message arrives
→ potential performance issue

• Charm++ callback is used to notify the receiver MPI
rank when all GPU buffers have arrived

ptr si e tag

ptr si e tag c

 mi end evice

 rts end evice

10 / 17

Implementation Details

• Charm4py

• Utilizes channels established between chares

• Provides functionality to explicitly post receives like
MPI

• Charm++ callback used to wake up suspended
coroutine when communication completes

 u er si e

 evice u er

 mi end evice

 rts end evice

if not gpu_direct:
Host-staging mechanism (not GPU-aware)
Transfer GPU buffer to host memory and send
charm.lib.CudaDtoH(h_send_data, d_send_data, size, stream)
charm.lib.CudaStreamSynchronize(stream)
channel.send(h_send_data)

Receive and transfer to GPU buffer
h_recv_data = partner_channel.recv()
charm.lib.CudaHtoD(d_recv_data, h_recv_data, size, stream)
charm.lib.CudaStreamSynchronize(stream)

else:
GPU-aware communication
Send and receive using GPU buffers directly
channel.send(d_send_data, size)
channel.recv(d_recv_data, size)

11 / 17

Experimental Setup

• OLCF Summit

• Up to 256 nodes (1,536 NVIDIA Tesla V100 GPUs)

• 6 processes per node, 1 process (1 CPU core) per GPU

• NVLink: 50 GB/s, Infiniband: 12.5 GB/s

• No overdecomposition/virtualization (1 chare object per PE/CPU core)

• Benchmarks

• OSU latency & bandwidth micro-benchmarks

• Proxy application for 3D Jacobi iterative method (Jacobi3D)

• Compare AMPI vs. OpenMPI

• Both uses UCX to transfer GPU data

• Evaluate overheads caused by message-driven execution & intermediate Charm++ RTS layers

12 / 17

Performance Evaluation: Latency

• H: Host-staged, D: Direct GPU-GPU

• Charm++: ~10.2x, AMPI: ~11.7x, Charm4py: ~17.4x

• AMPI overheads vs. OpenMPI

• Message packing/unpacking, additional host-side metadata message & delay in posting receive, Charm++ callback invocations

13 / 17

Performance Evaluation: Bandwidth

• Charm++: ~9.6x, AMPI: ~10x, Charm4py: ~10.5x

14 / 17

Performance Evaluation: Jacobi3D

Charm++ only,
AMPI and Charm4py
in paper

15 / 17

Ongoing/Future Work

• How to close the gap between Charm++/AMPI vs. OpenMPI?

• Post receive without waiting for sender’s metadata

• Charm++: Need a different API (‘Tagged API’) to push responsibility of tag generation to the user (like MPI)

• AMPI & Charm4py: Directly utilize explicit receive, like OpenMPI

• GPU support for Active Messages API in UCX?

< Intra-node > < Inter-node >

8B: 6.8 us / 4.5 us / 1.3 us 8B: 7.0 us / 5.1 us / 2.8 us

(Charm++) (Charm++)

16 / 17

Conclusion

• Design and implementation to support GPU-aware communication using UCX in multiple parallel
programming models: Charm++, AMPI, and Charm4py

• Design considerations to support message-driven execution and task-based runtime systems

• Evaluated performance improvements using a set of micro-benchmarks and proxy application

17 / 17

Thank you! Questions?

